OAT FORAGE YIELDS AT OVERTON FOR 1998-99 AND THREE-YEAR MEANS

Steve Ward, Jim Crowder and L. R. Nelson

Background. The oat forage crop is an important winter annual in East and South Texas. Oats have advantages over other small grains in that they will produce more forage in warm weather than wheat and rye. Oats will normally produce a greater total season forage yield than wheat or rye. Oats will also grow-off rapidly after seeding in a prepared seedbed and produce forage early in the fall with moisture and warm temperatures. A disadvantage of oats is that they often are susceptible to winterkill during periods of extreme cold. Oats are of high forage quality and cattle and deer often prefer oats over other small grains species. There are significant differences between varieties and over years. Some varieties produce more forage in the fall while others produce higher yields in the winter or spring.

Research Findings. An oat forage variety test is conducted annually at TAMU Agricultural Research and Extension Center at Overton. Commercial and experimental oat varieties were evaluated during the past 3 years. Fertilizer application rates and dates are noted in Table 1. Planting dates were early September normally, however, in 1998 the planting date was 18 September. Seed were drilled into a prepared seedbed at an 1 inch depth at 110 lb/ac. Plot size was 4 x 12 ft with four replications. The plots were harvested with a Hege plot harvester at a cutting height of 2 inches on 9 December, 8 February, 22 March, and 16 April. In the 9 December harvest, experimental lines FLX502-1-B-Q, TX95C3147, TX96M1390, and TX97C1168 produced the higher forage yields. In the 8 February harvest, 'TAMO 386', 'Harrison' and 'Bob' were the higher yielding commercial entries, although all yields were quite low during this "winter" period. Yields were nearly 4 times higher on the 22 March harvest. Entries producing over 2600 lb dry matter were TX96M1384, 'Dallas', NF 188, FL920HR26,76, and FL920HR3134, however, they were not significantly different than several other entries. In the last harvest, best yielding entries were TAMO 386, TX93Ab715, and 'TAMO 397'. Highest yielding commercial entries for the entire growing season were TAMO 386, Dallas, and TAMO 397. Yields of varieties tested over the last 3 years indicated that Dallas and TAMO 397 were similar, however, TAMO 386 was not tested all three years. We did experience some winter freeze damage in 1998-99. As expected both TAMO 397 and TAMO 386 had significant freeze injury. Both of these varieties are susceptible to freeze injury in North Texas.

Application. Data presented from these trials should be useful in selecting oat varieties for

your ranch. Depending on variety availability, compare forage yields to determine which variety you want to plant. Oats will produce good forage yields during the early fall, early spring, and late spring but during cold weather, little forage will be produced.

Table 1. Oat forage variety test at Overton, Texas for 1998-99 and 3-year average.

Variety	Harvest 1 Dec 9	Harvest 2 Feb 8	Harvest 3 Mar 22	Harvest 4 Apr 16	Total DMY	Three Year Average	Freeze Damage 0-9
	pounds of dry matter/acre						
TAMO 386 FLX502-1-B-Q TX96M1384* Heavy Grazer Dallas	600 1222 726 947 867	626 423 430 419 512	2455 2131 2691 2347 2622	2336 2155 2022 2103 1706	6016 5930 5868 5816 5707	_a _ _ _ _ 5002	3 2 2 0 1
TX93Ab715* TX95C3147* NF 188* TX96M1609* TAMO 397	939 1210 695 761 817	315 334 550 421 366	1886 1851 2624 2023 1796	2547 2195 1632 2286 2461	5686 5590 5501 5491 5439	- 5151 - 4940	3 3 0 2 4
TX83Ab2923* Harrison FL920HR26,76 FL920HR3134 811	987 785 558 109 644	401 657 629 607 506	1968 2229 2749 2696 2355	2071 1625 1298 1720 1603	5427 5296 5235 5130 5108		1 0 1 1
Bob Chapman Ozark TX92M1028* TX97C1168*	721 692 588 502 1127	643 493 538 520 80	2375 2505 1944 2081 1171	1369 1239 1796 1716 1988	5107 4929 4865 4818 4365	4314 - 4503 - -	1 1 0 1 7
TX96M1390* Grand Mean CV LSD (0.10)	1168 793 33 240	28 452 33 135	989 2166 19 376	1968 1897 24 418	4154 5308 12 583	1 1 1	2 0 0 0

Planted September 18, 1998. Fertilization: Preplant 500 lb 10-20-20/ac. Topdressed with 50 lb N/ac on November 2, 40 lb N/ac on December 18, 40 lb N/ac on January 15, 500 lb 13-13-13/ac on February 25, and 25 lb N/ac on March 24, 1999.

Freeze damage recorded on a 0-9 scale where 0 = no damage and 9 = dead plants.

^{*}Experimental line, seed not available to growers.

^aEntry not tested over the last 3 years.