Forage Research in Texas 1982 # Evaluation of Alfalfa Cultivars for Hay Production by May 3 and over half by June 1 .S. C. Holf 10 N rate at the ### SUMMARY Fourteen alfalfa varieties were evaluated for yield during a three-year period in the Brazos River bottom near College Station. Several varieties averaged over 6 tons production per acre over the three-year period even though two cuttings were lost because of insect damage. Alfalfa weevil and fall army worm were the insects causing the most damage. ### Introduction Alfalfa is recognized as the "Queen of Hay" plants because of its high level of potential production and excellent forage quality. Alfalfa is best adapted to deep, fertile, well-drained soils. While alfalfa is drought resistant in terms of plant survival, it requires large amounts of water for maximum production. Approximately 80% of the acreage grown for hay in Texas is found in the High Plains, Rolling Plains, and Trans-Pecos areas. The remaining acreages are largely in the Red, Brazos, and Rio Grande River bottoms. The High Plains, Trans Pecos, and Rio Grande River bottom acreages are essentially all irrigated. Average hay yield is about 4.7 tons per acre, ranging from less than 3 tons to more than 6 tons. # Experimental Procedure The varieties listed in Table 2 were planted October 13, 1977 on alluvial Miller clay soil at College Station (Brazos River-bottom). Seeding rate was 15 pounds of seed per acre. Plots consisted of 5 12-inch rows, 20 feet long, replicated 5 times. Harvests were made in the early bloom stage except when delayed by rainfall. The plot area received 0-60-0 fertilizer at planting, April 1979 and April 1980. Approximately 3 acre inches of irrigation water were applied each on June 21 and August 15, 1978, July 3 and July 9, 1979. Rainfall recorded near the test site at College Station is shown in Table 1. # Results and Discussion Alfalfa planted in the fall of 1977 at College Station produced 2 tons of hay per acre by the following May (Table 2). Four cuttings were harvested each in 1978 and 1979 and 3 cuttings in 1980. Regrowth following the August 1979 harvest was defoliated by fall army worms and not harvested. Similarly, the first growth in 1980 which should have been harvested in late April was defoliated by the Alfalfa weevil during a rainy period when we could not get into the field to control the insect. KEYWORDS: Alfalfa varieties, hay yield, insect damage. Professor, Soil & Crop Sciences Department, College Station, Texas 77843. There were no significant differences among varieties in production during the three-year period. Yield per cutting was as high in 1980 as in 1978. Yield per year was down in the third year but due to the loss of one cutting from insect damage which did not occur in 1978. Also, rainfall was very limited in 1980 and no irrigation water was applied. There is some indication that some varieties were losing vigor while others were not. Arc increased in yield each year while Mesilla and Williamsburg decreased each year. The difference between Arc and each of the two decreasers showed a significant (P<0.05) linear relationship. Stands of all cultivars in the spring of 1981 appeared to be satisfactory for production. Insects are a major problem at times in alfalfa production, fall army worms and alfalfa weevil referred to previously being specific examples. Both are controllable with insecticides but require close monitoring because excessive damage can occur within short periods. Alfalfa cultivars are available that are resistant to one or more of the following insects: alfalfa weevil, spotted alfalfa aphid, pea aphid, and potato leaf hopper. However, insecticides to control alfalfa weevil may be necessary at times even with resistant varieties. Inadequate soil moisture may severely restrict alfalfa yields at times. Apparently this was the reason for the lack of a fall cutting in 1980. There was essentially no effective rainfall from May until September 8. Only erratic regrowth occurred after the August 1 harvest. Recovery was poor after early September rainfall until after the first of October. Conditions did not permit the late fall growth to reach the bloom stage. The data in this report indicate that alfalfa with adequate insect control will produce in excess of 5 tons of hay annually and that stands may be expected to persist three or more years under most conditions in the Brazos River bottom. The performance of additional varieties in the Brazos River bottom has been reported by Holt (1). Less drought stress was encountered in the earlier study, and yields ranged from 5 to 8 tons per acre over a three-year period. ### Literature cited Holt, Ethan C. 1978. Evaluation of alfalfa varieties for hay production. Texas Agric. Exp. Sta. PR-3481. 6 P. Table 1. Rainfall during the growing season, University Farm, Burleson County, near College Station | | Rainfall ir inches | | | | |-----------|--------------------|------|------|--| | Month | 1978 | 1979 | 1980 | | | March | 2.72 | 4.77 | 5.65 | | | April | 1.62 | 3.93 | 1.44 | | | May | 2.49 | 9.23 | 5.97 | | | June | 3.85 | 1.13 | . 61 | | | July | . 87 | 5.01 | . 38 | | | August | . 45 | 1.12 | - 20 | | | September | 7.56 | 1.30 | 3.97 | | | October | 3.18 | 1.30 | 3.22 | | alim asa uun goliv Sursul eine 111 O difference between en 80 cant (20003) BURLESC - page spilen vlanomen RIVER DATE TO SHORE BRAZOS I A CULTIVARS, F ALFALFA ON HAY PRODUCTION (2.15 Armed dedek most TABLE | 1 | Average
per
cutting ² | 3195
3293
3084
3299
3002 | 3006
3206
3268
3021
2999 | 3219
3019
2885
2981 | |-----------|--|--|--|--| | Date of H | Total | 10780
10020
10200
9970
9280 | 9230
10400
10230
8620
8610 | 10170
9230
8140
9450 | | | Aug 1 | 2040
1510
2040
1810
1830 | 2090
2260
1730
1780
1870 | 2270
1840
2020
2190 | | | 1980
June 28 | 2510
2760
2720
2570
2540 | 2620
2780
2680
2390
2170 | 2730
2650
2660
2560 | | | June 2 | 6230
5450
5440
5590
5010 | 4520
5360
5820
4450
4570 | 5170
4740
3460
4700 | | | Total | 12670
12660
11010
12680
11610 | 10750
11690
13150
12080
12430 | 11950
11600
10540
10380 | | | Aug 28 | 2560
2440
2610
2470
2720 | 2860
2190
2450
2690
2320 | 2810
2770
2430
2740 | | | 1979
July 23 | 3200
3220
3040
3320
2940 | 2910
2830
3360
3300
3010 | 3170
2870
2900
2990 | | | June 22 | 4220
4690
3960
4630
4130 | 3560
4760
4460
4310
5180 | 3830
4310
3880
3470 | | | April 25 | 2690
2310
1400
2260
1820 | 1420
1910
2880
1780
1920 | 2140
1650
1330
1180 | | | Total | 11690
13540
12710
13640
12130 | 13080
13180
12760
12530
11950 | 13290
12380
13050
12960 | | | Sept 26 | 1780
1910
2080
2010
1840 | 2020
2120
1970
1890
1770 | 1190
1910
2180
2070 | | | 1978
July 18 | 2290
2550
2560
2640
2150 | 2740
2750
2330
2110
2360 | 2540
2730
2530
3000 | | | June 21 | 3100
4430
3940
4160
4330 | 3960
4050
4000
4320
4050 | 4460
4120
3970
4130 | | | May 16 | 4520
4650
4130
4830
3810 | 4360
4260
4460
4210
3770 | 4390
3620
4370
3760 | | | Cultivar | 1 Arc
2 Olympic
3 Kan 2A
5 Map B42
5 Saranac | 6 WL512
7 Apollo
8 Team
9 Williamsburg
10 Dawson | 11 WL318
12 Zia
13 Mesilla
14 Moapa | Pounds đ 02) di na Pounds dry forage per acre 2 Values not significantly different (P> tic examples.