Forage Research in Texas, 1992

Production Potential of Texas Bluegrass (Poa arachnifera Torr.)

J.C. Read, D.W. Walker, M.A. Sanderson, and R.M. Jones

Summary

Texas bluegrass (*Poa arachnifera* Torr.) is a tufted dioecious perennial cool-season grass with long, slender rhizomes. This study was conducted to determine the forage potential of Texas bluegrass. Replicated plots using transplants of 13 different accessions were established in the fall of 1988 at the Texas A&M University Research and Extension Centers at Dallas and Stephenville. Dry matter production for the 1989-90 production year averaged 6,926 lb/A at Dallas and 2,280 lb/A at Stephenville. Dry matter production for the 1990-91 production year averaged 3,829 lb/A at Dallas and 4,167 lb/A at Stephenville. In a separate study, the variation in in vitro true digestibility was investigated for one population (entry 1-86). Differences were not significant among plants with mean values of 87.9% for vegetative stage of growth and 78.3% at anthesis.

Introduction

Many livestock producers desire a cool-season perennial grass to cut the annual cost of seeding winter annuals for their animals. Any decrease in winter pasture cost would greatly enhance the

Keywords: dry matter / cool-season grass.

economic position of livestock production. A reliable cool-season perennial forage grass would allow substantial savings from the yearly cost of land preparation and seed purchases to establish annual grasses.

Texas bluegrass is a tufted dioecious perennial cool-season grass with long, slender rhizomes. It occurs in all the vegetational areas of Texas except the South Texas Plains, the High Plains, and the Trans-Pecos, Mountains, and Basins. It also occurs in Oklahoma, southern Kansas, and western Arkansas. In Texas, it occurs most frequently in the following vegetational areas: (1) Blackland Prairies, (2) Cross Timbers and Prairies, (3) Edwards Plateau, and (4) Rolling Plains. This study was conducted to determine the forage potential of Texas bluegrass.

Procedure

Thirteen ecotypes of Texas bluegrass, each from a different Texas county, were selected to determine dry matter production potential. Because of the limited seed quantity, direct seeding in the field was not done. Seeds were germinated in flats using a commercial media and then transplanted to growing trays with cell sizes of 1.9×2.1 in. Twelve plants were used to establish each plot at Texas A&M University Research and Extension Centers at Dallas and Stephenville during the fall of 1988. There were three replications, and plot size was 4×6 ft. At Dallas the soil was Houston black clay (fine, montmorillonitic, thermic Udic Pellusterts), avery deep, fertile soil. At Stephenville, the soil type was a Windthorst fine sandy loam (fine, mixed, thermic Udic Paleustaff), a shallowtype soil underlaid by a clay hardpan.

Each year, fertilizer was applied at rates of 64 lb nitrogen (N)/A in fall and spring at Dallas and 60 lb N/A in fall and 60 lb N/A and 26 lb phosphorus (P)/A in spring at Stephenville. During the 1989-90 and 1990-91 growing season, respectively, Dallas had four harvests and three harvests, and Stephenville had two and four harvests.

Subsamples were collected at harvest for N determination at the Dallas location. Samples for in vitro true digestibility (IVTD) were hand-harvested from plants growing at Dallas in a space plant nursery. All samples were oven-dried at 60 °C. Total N was determined by micro-Kjeldahl, and IVTD was determined using the method of Goering and Van Soest.

Results and Discussion

Dry matter production averaged 6,926 lb/A in the 1989 season (Table 1) and 3,829 lb/A in the 1990-91 season (Table 2) at Dallas. As expected with a non-selected, highly heterozygous population, the variation within ecotypes was very high, as shown by the high CV values. No particular ecotype was outstanding in this test, but entry 35-88 was significantly worse than the top entries in 1989-90. No differences were observed, however, in the 1990-91 season. The yield of Texas bluegrass compares favorably with yields obtained from an adjacent tall fescue test at Dallas that was treated with the same fertility and harvested at the same time. The mean dry matter production of tall fescue cultivars was 3,858 lb/A in the 1989-90

Table 1. Dry matter p	production of Texas	s bluegrass at Dallas	Texas, 1989-90.
-----------------------	---------------------	-----------------------	-----------------

		Date (moday-year)										
Entry	11-14	11-14-89		3-23-90		5-	5-7-90		6-19-90		Total	
							o/A .					
23-88	1603	abc	3	487	ab	3629	а		582	b	9301	a
2-88	2617	a	3	254	ab	3611	b	C	728	ab	9211	a
15-88	1397	abc	4	400	a	2400	b	cd	573	b	8768	a
20-88	1800	ab	3	605	ab	2568	b	cd	578	b	8551	a
39-88	1712	abc	3	477	ab	2499	b	cd	841	a	8530	a
21-88	1463	abc	2	334	b	2782	b		817	a	7896	ab
32-88	1892	ab	30	050	ab	1949		cd	582	cd	7473	ab
19-88	1855	ab	2	518	ab	2399	b	cd	686	ab	7458	ab
1-86	1960	ab	2	779	ab	2061	b	cd	657	ab	7457	ab
4-88	1435	abc	3	94	ab	2051	b	cd	653	ab	7332	ab
18-88	1572	abc	20	515	ab	1956	(cd	636	ab	6779	ab
40-88	497	bc	19	967	b	3514	а		650	ab	6628	ab
35-88	999	bc	22	204	b	1771		d	543	b	5519	b
Mean	1600		30	030		2475			656		6926	
C.V. (%)	41			33		17			16		19	

season and 6,541 lb/A in the 1990-91 season. The tall fescue test during the summer of 1991 showed a substantial loss of stand; the Texas bluegrass test showed no loss.

Dry matter production of Texas bluegrass was much lower at Stephenville during the 1989-90 season and yielded a mean of 2,280 lb/A (Table 3) but was higher than the Dallas location yield during the 1990-91 season, which had a mean of 4,167 lb/A (Table 4). Yields at Stephenville did not differ significantly.

Protein content differed among the different entries, but the greatest differences were due to

Table 2. Dry matter yield of Texas bluegrass at Dallas, Texas, 1990-91.

plant maturity. Mean protein content varied from a high of 22% to a low of 13% with an average of 16%. In a separate study, the variation in IVTD was investigated for one population (entry 1-86). No significant differences occurred among plants having mean protein values of 87.9% at vegetative stages of growth and values of 78.3% at anthesis.

The yield of Texas bluegrass at both locations and its quality at Dallas indicate that this grass has a good potential as an improved cool-season pasture grass. Future studies are being conducted to determine the production potential in other regions of Texas and Oklahoma.

 Table 3. Dry matter production of Texas bluegrass at

 Stephenville, Texas, 1989-90.

		Dat	e (moda	y-year)				Date (mo		
Entry	12-11	-90	4-5-91	5-	1-91	Total	Entry	3-21-90	4-23-90	Total
	lb/A									
23-88	975	ab	1743 N	S 1320	bc	4038 NS	32-88	959 NS	1879 NS	2838 NS
2-88	1108	ab	1356	1083	bcd	3547	1-86	1016	1578	2594
15-88	1070	ab	1239	1144	bcd	3453	20-88	902	1619	2521
20-88	750	b	1196	1144	bcd	3090	2-88	909	1503	2412
39-88	1413	a	2061	1059	bcd	4533	39-88	896	1510	2406
21-88	1405	a	1695	1451	b	4551	40-88	736	1635	2371
32-88	867	ab	1885	1078	bcd	3830	21-88	786	1542	2328
19-88	1163	ab	1980	1453	b	4596	4-88	786	1398	2184
1-86	971	ab	1951	1452	b	4374	18-88	839	1332	2171
4-88	945	ab	1554	780	d	3279	23-88	783	1306	2089
18-88	947	ab	1131	918	cd	2996	19-88	769	1246	2015
40-88	591	b	1101	2005	a	3697	35-88	748	1175	1923
35-88	1067	ab	1761	933	cd	3761	15-88	723	1065	1788
Mean	1021		1588	1220		3829	Mean	859	1446	2280
C.V. (%)	30		34	20		21	C.V. (%)	32	20	19

Table 4. Dry matter yield of Texas bluegrass at Stephenville, Texas, 1990-91.

- and the second													
Entry	10-31-90		3-4-91		4-4-9	4-4-91			Total				
23-88	866	NS	1227	ab	781 N	IS	1150 N	S	4024	NS			
2-88	1100		1313	ab	1017		1155		4585				
15-88	1055		1693	а	910		1113		4771				
20-88	763		1176	ab	1074		1117		4130				
39-88	948		1387	ab	1074		1214		4623				
21-88	820		682	b	715		970		3187				
32-88	1174		1156	ab	898		1122		4350				
19-88	1162		1493	ab	900		1100		4665				
1-88	988		1444	ab	960		1041		4433				
4-88	974		1040	ab	938		989		3941				
18-88	1050		1140	ab	842		1022		4054				
40-88	745		879	ab	805		1086		3515				
35-88	817		1048	ab	924		1124		3913				
Mean	958		1206		910		1093		4167				
C.V. (%)	27		36		27		14		20				