Forage Research In Texas, 1986 # Yield and Nitrogen Uptake Efficiency by Coastal Bermudagrass Show Urea as a Safe Nitrogen Source W. B. Anderson and J. M. Drwal #### Summary Several sources of nitrogen fertilizer [ammonium nitrate (AN), ammonium sulfate (AS), urea, and urea-ammonium nitrate solution (UAN)] were field tested on bermudagrass ($Cynodon\ dactylon\ L$.) to determine nitrogen efficiency. Additionally, urea was supplemented with $CaCl_2$ to determine if $CaCl_2$ would protect urea from ammonia volatilization loss. Individual experiments were initiated successively throughout the growing season on two diverse soils to encompass the differing environmental conditions which might influence NH_3 volatilization. The clay soil was a Brazos River Bottom Ships clay series KEYWORDS: N volatilization/bermudagrass yield/urea/N uptake. (calcareous). The sand soil was a Lufkin fsl series (an acid fine sandy loam). Coastal bermudagrass yields from urea fertilization were consistently as good and sometimes higher than from the other N sources tested. The addition of CaCl₂ did not enhance N uptake as it did in the previous year. The comparative high yields resulting from surface applications of urea fertilizer throughout the growing season indicate no serious risk of N loss from urea under the prevailing environmental conditions. ### Introduction In recent years, urea has gained importance among N fertilizers because of its low cost per unit of nitrogen. However, since some studies have cited decreased plant response to urea as a nitrogen fertilizer, especially when surface applied, producers are hesitant to use this source in situations where fertilizer cannot be incorporated into the soil. Considerable nitrogen losses have been reported in laboratory work under conditions favoring rapid urea hydrolysis and build up of NH3 in the soil. Recent laboratory and greenhouse work has shown that CaClo and other soluble salts are effective in reducing N loss from surface applied urea. The objectives of this study were: (1) to determine the effectiveness of urea in the field as a nitrogen fertilizer compared with other N sources commonly used for bermudagrass production in the local area, and (2), to field test CaCl2, applied with urea as a means of reducing volatile NH3 loss over a range of soil and environmental conditions existing in the College Station, Texas area. #### **Procedures** Experimental field plots were established at two locations with contrasting soil types. The physical and chemical characteristics of the two soils were reported in the preceding annual report. Experiments were conducted in successive periods throughout the 1985 growing season. A total of 30 experiments were staggered throughout the season to encompass the varying environmental conditions which might influence NH3 volatilization losses from urea as compared with other nitrogen fertilizers. Fertilizer treatments, rates, and application methods are listed in Table 1. Each fertilizer treatment and the control were replicated four times in a randomized block design within each experiment. Repeated experiments were established to vary the potential volatilization time period between fertilizer application and first significant rainfall (>0.2 inch). This criteria was used to estimate days of potential volatilization for each experiment. Plots were fertilized to initiate individual experiments and harvested when bermudagrass reached maturity. After harvesting, samples were dried, ground, and chemically analyzed for N content using a common micro Kjeldahl method. ## Results and Discussion Each trial (by date) in the Tables must be considered as a separate individual experiment because environmental conditions differ with date and time period which would affect growth and N fertilizer efficiency. Thus, yield comparisons between N sources in a column are valid because of the same growing conditions during that growing period. However, other growing periods had considerably different environmental conditions. The Brazos River Bottom location (Table 2) had supplemental TABLE 1. NITROGEN FERTILIZER TREATMENT APPLIED TO BERMU-DAGRASS | Treatment | N Rate
(lb/Acre) | Form | Application
Method | |--------------------------------|---------------------|-----------------|-----------------------| | Ammonium
Nitrate (AN) | 100 | dry
pelleted | surface
broadcast | | Ammonium
Sulfate (AS) | 100 | dry
pelleted | surface
broadcast | | Urea | 100 | dry
pelleted | surface
broadcast | | Urea-ammonium
Nitrate (UAN) | 100 | liquid | surface
band | | Urea + CaCl ₂ * | 100
100 | liquid | surface
band | | Control | 0 | | | ^{*}CaCl₂ applied at 0.25 Ca⁺²: 1 N equivalent ratio. irrigation available whereas the Wellborn location (Table 3) was dependent on rainfall (dryland). The Wellborn site yields were considerably reduced by drought conditions. Statistical analysis of bermudagrass dry matter yield for the two soil types is included in the Tables. The values of bermudagrass yield are the means of four treatment replications. The urea treatments gave comparatively high yields in all trials compared to the other N sources. Yields from urea were not significantly better than from AN; however sometimes they were better than from AS. Apparently, N losses do not differ much among the N sources. An overall consideration of yields from the several trials shows little statistically significant difference between the N sources. The N uptake by bermudagrass as influenced by N source is shown in Tables 4 and 5. The N uptake values showed no consistent pattern of one N source being better than another. The addition of CaCl₂ with urea did not enhance N uptake as it did in the previous year. These results corroborate the yield data as evidence that N losses are not occurring from urea more than from the other N sources. TABLE 2. YIELD OF BERMUDAGRASS AS AFFECTED BY N FERTILIZER SOURCE ON BRAZOS RIVER BOTTOM CLAY SOIL | Variety | | | 15, 26,0 | Callie | | | | | | | | | | | |---|------------------|---------------------------------------|----------|------------|------------|------------|------------|--------------|-----------|----------|------------|------------|------------|------------| | Fertilized | | Mar.
28 | Apr. | May
24 | May
30 | July
23 | Aug. | May
4 | May
15 | ۸ | Aay
2 | July
16 | Aug.
9 | Aug. | | Days Until
Rain | | 2 | 5 | 25 | 19 | 6 | 15 | 4 | 2 | | 1 | 3 | 7 | 1 | | N-Source | N-rate | 1970 . 198 | q da | A falman | great. | | | | | | | | | | | 14-30dice | (lb/A) | - | | - | - | | | eld in cwt/a | | | | 421- | 276 | 23b | | Control | 0 | 7c* | 8c | 16b | 16b | 17c | 13c | 11b | 11b | | 17b | 13b | 27b
35a | 40a | | NH ₄ NO ₃ | 100 | 43a | 41a | 50a | 49a | 56ab | 57a | 28a | 23a | | 33a | 32a
34a | 33ab | 37a | | Urea | 100 | 40ab | 44a | 51a | 48a | 57a | 55a | 28a | 23a | | 33a | 34a
32a | 42a | 36a | | Urea + Ca | 100 | 37b | 40a | 47a | 46a | 52b | 53ab | 31a | 23a | | 37a
32a | 29a | 35b | 36a | | UAN | 100 | 41ab | 34b | 47a | 49a | 54ab | 53ab | 24a | 21a | | | 29a
28a | 28b | 34a | | $(NH_4)_2SO_4$ | 100 | 36b | 34b | 47a | 44a | 55ab | 49b | 28a | 22a | 177 | 33a | 20a | 200 | 34a | | Variety | in more of | N. ANN ALLEY | d if the | 9 1 1-1 | S-16 | 5 | | | | | | S-5 | 4 | | | Fertilizer | | Apr.
12 | | Apr.
15 | June
17 | June
25 | July
31 | Aug. | | May
1 | | June
7 | Aug.
7 | Aug.
16 | | Days Until
Rain | | 1 | | 5 | 1 | 8 | 16 | 8 | | 7 | | 11 | 9 | 1 | | | | 3 2 3 | 100 | | | | CTO TO | | | 11111 | | 150, 150 | THE | | | N-Source | N-rate
(lb/A) | | | | | | | | | | | | | | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | A SHOTTING | [| Ory matter | yield in cw | t/acre | - | _ | | | 1 | | Control | 0 | 60 | | 6c | 7b | 9b | 9b | 10c | | 13b | | 22c | 17c | 22d | | NH ₄ NO ₃ | 100 | 32a | | 27a | 36a | 29a | 46a | 48a | | 32a | | 57a | 45a | 36b | | Urea | 100 | 30a | | 24ab | 38a | 26a | 48a | 46a | | 35a | | 47b | 43a | 41at | | Urea + Ca | 100 | 32a | | 23ab | 33a | 25a | 47a | 42ab | | 40ab | | 53ab | 44a | 44a | | UAN | 100 | 29a | | 26a | 29a | 30a | 48a | 47a | | 42a | | 51ab | 46ab | 42a | | (NH ₄) ₂ SO ₄ | 100 | 23b | | 21b | 34a | 27a | 43a | 37b | | 34a | | 50ab | . 39b | 35c | ^{*}Numbers within a column followed by the same letter are not significantly different at the 5 percent probability level using Duncan's Multiple Range Test. TABLE 3. YIELD OF COASTAL BERMUDAGRASS AS INFLUENCED BY N FERTILIZER SOURCE ON SANDY SOIL | | Fertilized
Days until rain | Apr. 1 | Apr. 15
5 | May 14
6 | May 23
26 | Aug. 30 | Sept. 9 | Sept. 13
15 | Sept. 16 | |---|--------------------------------------|---|---|---|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | N-Source | N rate
(lb/A) | - | | r mi | — Coastal yield (cwt/acre) – | | | | | | Control
NH ₄ NO ₃
Urea
Urea + Ca
UAN
(NH ₄) ₂ SO ₄ | 0
100
100
100
100
100 | 10b*
40a
36a
38a
38a
37a | 13c
43ab
43ab
48a
42ab
39b | 8c
49a
45ab
48a
44b
47ab | 7b
42a
46a
49a
44a
46a | 8b
48a
53a
50a
48a
47a | 8b
42a
39a
37a
38a
41a | 8b
39a
36a
39a
39a
36a | 8b
35a
28a
28a
33a
33a | ^{*}Numbers within a column followed by the same letters are not significantly different at the 5 percent probability level using Duncan's Multiple Range Test. TABLE 4. THE N UPTAKE BY BERMUDAGRASS FROM DIFFERENT N FERTILIZER SOURCES ON CLAY SOIL | Variety | | Coastal | | | | | | S-16 | | | | | | S-54 | | | | |-----------------------------|-----|------------|-----------|---------------------|-----------|------------|-----------|------------|------------|------------|------------|------------|------|----------|-----------|------|--------------| | Fertilized | | Mar.
28 | Apr.
3 | May
24 | May
30 | July
23 | Aug.
1 | Apr.
12 | Apr.
15 | June
17 | June
25 | July
31 | Aug. | May
1 | June
7 | Aug. | Aug. | | Days Until | | | | | | | | | 1 | | | | | | | | | | Rain | | 2 | 5 | 25 | 19 | 6 | 15 | 1 | 5 | 1 | 8 | 16 | 8 | 7 | 11 | 9 | 1 | | N-Source &
N-Rate (lb/A) | | | | h ul _i j | | 7 101 | 100 | - N upt | ake (Po | unds pe | r Acre) | | | | | | | | Control
NH4NO3 | 0 | 9c* | 10d | 20b | 17b | 14b | 11b | 8c | 10c | 10d | 12c | 11c | 13d | 15c | 24c | 20d | 24d | | Urea | 100 | 63a | 75a | 75a | 74a | 54a | 73a | 41a | 37a | 67ab | 55ab | 61ab | 66ab | 42b | 71a | 53b | 43c | | | 100 | 59ab | 73ab | 66a | 74a | 57a | 67a | 37a | 30ab | 72a | 52ab | 74a | 59b | 48b | 64ab | 56ab | 51bc | | Urea + CaCl ₂ | 100 | 57ab | 63bc | 67a | 73a | 55a | 65a | 40a | 30ab | 56bc | 47b | 73a | 71a | 59a | 72a | 57a | 62a | | UAN | 100 | 58ab | 59c | 71a | 77a | 56a | 63a | 41a | 36a | 52c | 59a | 69a | 69ab | 64a | 74a | 59a | | | $(NH_4)_2SO_4$ | 100 | 51b | 58c | 68a | 70a | 57a | 68a | 29b | 28b | 62abc | 47b | 55b | 49c | 44b | 60b | 45c | 53ab
45bc | ^{*}Numbers within a column followed by the same letter are not significantly different at the 5 percent probability level using Duncan's Multiple Range Test. TABLE 5. N UPTAKE BY COASTAL BERMUDAGRASS AS INFLUENCED BY N FERTILIZER SOURCE ON SANDY SOIL | | Fertilized
Days until rain | Apr. 1
7 | Apr. 15
5 | May 14
6 | May 23
26 | Aug. 30 | Sept. 9 | Sept. 13
15 | Sept. 16 | |---|-------------------------------|--|---|---------------------------------------|---------------------------------------|--|---------------------------------------|---|--| | N-Source | N rate
(lb/A) | | | | | | | | | | Control
NH ₄ NO ₃
Urea
Urea + Ca
UAN
(NH ₄) ₂ SO ₄ | 100 | 13d
94a
65c
76b
76b
82b | 18c
94a
74b
91a
96a
86ab | 8c
74a
52b
59b
59b
60b | 7b
60a
56a
65a
65a
61a | 24b
58a
60a
60a
55a
62a | 7c
56a
42b
44b
54a
62a | 7d
60a
38c
47bc
57ab
62a | 9c
57a
37b
45ab
54ab
52ab | ^{*}Numbers within a column followed by the same letter are not significantly different at the 5 percent probability level using Duncan's Multiple Range Test.