PHOSPHORUS UPTAKE BY RYEGRASS-BERMUDAGRASS FERTILIZED WITH BROILER LITTER AND NITROGEN

G. W. Evers, M. J. Parsons, and N. B. Melson

Background. A disadvantage of using broiler litter as a plant nutrient source is that more phosphorus is applied than is utilized by forge crops. Although it can vary widely, the average N- P_2O_5 - K_2O ratio in broiler litter in East Texas is about 4:4:3. Because about 25% of the nitrogen (N) in broiler litter is lost through volatilization, the available nutrient ratio is about 3:4:3. The N: P_2O_5 : K_2O uptake ratio is 4:1:3 for Coastal bermudagrass and 4:1:4 for annual ryegrass to reach 90% of maximum yield. This difference in nutrients applied in the broiler litter vs. crop needs results in the soil buildup of excess nutrients, especially phosphorus (P). As soil P increases, it can move into creeks, rivers, and lakes in runoff during heavy rainfall and cause environmental problems. If broiler litter is the only fertilizer used, N becomes the limiting nutrient. The application of commercial N fertilizer should enhance crop growth to take up some of the excess P. Four tons/acre of broiler litter were applied in October 1998 and 1999 and 2 tons/acre in October 2000 and 2001 to Coastal bermudagrass overseeded with annual ryegrass. Fifty lb N/acre were applied from 1 to 4 times in December, March, May, and/or July. This report will discuss the P uptake from the last 2 years since results of the first 2 years are reported in the 2002 Overton Field Day Report.

Research Findings. The 2 tons/acre of broiler litter contained 81 lb P in 2000 and 225 lb P in 2001 as P_2O_5 (same form of phosphorus used by the fertilizer industry). The least amount of P was removed in the treatment receiving no broiler litter or N fertilizer because of low soil P, forage yields, and P concentration of the forage. In 2001, P uptake by ryegrass was greatest when N fertilizer was applied in December and/or March (Table 1). Phosphorus uptake by bermudagrass was highest in treatments with a May N application. There was a substantial winter weed component in the April harvest in 2001. Nitrogen fertilizer increased P uptake when it was applied in December and March, March and May, and 4 times a year.

Phosphorus uptake in 2002 was slightly higher than in 2001 because of higher forage yields and not because of more P (225 lb/acre) being applied in the broiler litter. Phosphorus uptake by ryegrass was highest when N was applied in December and March and the March, May, and July treatments. Bermudagrass P uptake was usually maximized when N was applied in May. Total P uptake for 2002 was highest when N was applied 3 or 4 times a year. All N fertilizer treatments except the December treatment remove more P than applying broiler litter without N.

Application. Nitrogen fertilizer increased P uptake of ryegrass and bermudagrass. If the objective is to reduce soil P, a May N application is suggested since the forage must be harvested (hay, etc.) and removed. If the objective is to increase utilization of the excess P and other nutrients, N should be applied in December and March to increase ryegrass production for grazing which is more valuable than bermudagrass.

Treatment	Ryegrass	Bermuda	Weeds	Total
	lb P/acre			
No BL† or N	1.3 d ‡	4.9 e	0.8 d	6.9 c
BL, no N	8.2 bc	16.1 cd	4.1 a-c	28.4 b
BL, Dec.	11.3 a	14.6 d	3.9 a-c	29.7 ab
BL, Mar.	9.4 a-c	17.1 b-d	4.5 a	31.0 ab
BL, May	7.7 bc	19.8 ab	3.8 a-c	31.2 ab
BL, July	8.2 bc	17.1 b-d	4.6 a	29.9 ab
BL, Dec., Mar.	10.3 ab	18.9 a-c	4.1 a-c	33.4 a
BL, May, July	7.4 c	20.2 ab	4.4 ab	31.9 ab
BL, Mar., May	8.9 a-c	21.0 a	4.0 a-c	33.9 a
BL, Mar., May, July	10.3 ab	17.8 a-d	2.8 c	31.0 ab
BL, Dec., Mar., May, July	11.3 a	18.8 a-c	2.9 bc	33.0 a

Table 1. Phosphorus uptake by annual ryegrass and Coastal bermudagrass when fertilized with 2 tons/acre broiler litter in October 2000 and 50 lb N/acre from 1 to 4 times during the year in 2001.

[†]Broiler litter.

‡Values in a column followed by the same letter are not significantly different at 0.05 level, Fisher's Protected LSD test.

Table 2. Phosphorus uptake by annual ryegrass and Coastal bermudagrass when fertilized with 2 tons/acre of broiler litter in October 2001 and 50 lb N/acre from 1 to 4 times during the year in 2002.

Treatment	Ryegrass	Bermudagrass	Total	
	lb P/acre			
No BL† or N	0.8 g‡	5.8 f	6.6 g	
BL, no N	11.6 ef	18.5 e	30.1 f	
BL, Dec.	14.3 d	19.1 e	33.4 ef	
BL, Mar.	16.5 c	19.9 dc	36.4 с-е	
BL, May	12.0 ef	23.2 a-c	35.2 de	
BL, July	12.9 de	22.1 b-d	35.0 de	
BL, Dec., Mar.	20.7 a	19.1 ed	39.8 bc	
BL, May, July	10.4 f	25.3 a	35.7 с-е	
BL, Mar., May	17.6 bc	20.3 с-е	37.8 cd	
BL, Mar., May, July	18.8 ab	23.8 ab	42.7 ab	
BL, Dec., Mar., May, July	20.1 a	25.2 a	45.3 a	

†Broiler litter.

‡Values in a column followed by the same letter are not significantly different at the 0.05 level, Fisher's Protected LSD test.